Расчет разбавления растворов

Расчет разбавления растворов

Точность расчетов при приготовлении растворов зависит оттого, какой готовят раствор: приблизительный или точный. При расчетах приблизительных растворов атомные и молекулярные массы округляют до трех значащих цифр. Так, например, атомную массу хлора принимают равной 35,5 вместо 35,453, атомную массу водорода — 1,0 вместо 1,00797 и т. п. Округление ведут обычно в большую сторону.

При приготовлении стандартных растворов вычисления проводят с точностью до пяти значащих цифр. Атомные массы элементов берут с такой же точностью. При расчетах пользуются пятизначными или четырехзначными логарифмами. Растворы, концентрацию которых будем затем устанавливать титрованием, готовят, как и приблизительные.

Растворы могут быть приготовлены растворением твердых веществ, жидкостей или разбавлением более концентрированных растворов.

Расчеты при приготовлении растворов нормальной концентрации

Навеску вещества (г) для приготовления раствора определенной нормальности рассчитывают по формуле:


mн=ЭNV/1000,

где Э — химический эквивалент растворяемого вещества;

N — требуемая нормальность раствора, г-экв/л;

V — объем раствора, мл.

Навеску вещества обычно растворяют в мерной колбе. Разбавленные приблизительные растворы можно готовить, растворяя навеску вещества в объеме растворителя, равном объему раствора. Этот объем может быть отмерен мерным цилиндром или мензуркой.

Если раствор готовят из навески кристаллогидрата вещества, то в расчетное уравнение для определения навески подставляют величину химического эквивалента кристаллогидрата.

При приготовлении раствора с определенной нормальной концентрацией путем разбавления более концентрированного раствора объем концентрированного раствора (мл) рассчитывают по формуле:

Vк=ЭNV/Тк,

где Тк — концентрация концентрированного раствора, г/л, или:

Vк=NV/Nк,

где Nк — нормальность концентрированного раствора, или:

Vк=ЭNV/10 pкdк,

где pк — процентная концентрация концентрированного раствора;

dк — плотность концентрированного раствора, г/см3.

Концентрированные растворы разбавляют в мерных колбах. При приготовлении точных растворов (например, эталонных растворов из более концентрированного стандартного раствора) концентрированные растворы отмеривают пипетками или приливают их из бюреток. При приготовлении приблизительных растворов разбавление можно делать путем смешивания концентрированного раствора с объемом воды, равным разности между объемами разбавленного и концентрированного растворов:


VH2O=V-Vk

Расчеты при приготовлении растворов, концентрация которых выражена в граммах на 1 л

Величину навески вещества (г) для таких растворов рассчитывают по формуле:

mн=TV/1000,

где Т — концентрация раствора, г/л;

V — объем раствора, мл.

Растворение вещества обычно ведут в мерной колбе с доведением объема раствора после растворения до метки. Приблизительные растворы можно готовить путем растворения навески в объеме воды, равном объему раствора.

Если раствор готовят из навески кристаллогидрата, а концентрация раствора выражена из расчета на безводное вещество, навеску кристаллогидрата вычисляют по формуле:

mн=TVMk/1000M,

где Mk — молекулярная масса кристаллогидрата;

М —молекулярная масса безводного вещества.

При приготовлении растворов путем разбавления более концентрированных объем концентрированного раствора определяют по формуле:

Vк=VT/Tk,


где Tk — концентрация концентрированного раствора, г/л, или:

Vк=100VT/1000pkdk,

где pk — процентная концентрация концентрированного раствора;

dk — плотность концентрированного раствора, г/см3;

или:

Vк=VT/ЭNk,

где Nk — нормальная концентрация концентрированного раствора; Э — химический эквивалент вещества.

Растворы готовят так же, как и при приготовлении растворов определенной нормальной концентрации путем разбавления более концентрированных растворов.

Для приближенных расчетов, связанных с приготовлением растворов путем разбавления более концентрированных, можно пользоваться правилом разбавления («правилом креста»), которое гласит, что объемы смешиваемых растворов обратно пропорциональны разностям концентраций смешиваемых и полученного при смешивании растворов. Это выражают схемами:

схема

или:

схема

где N1, Т1, N3, T3 — концентрации смешиваемых растворов;

N2, Т2 — концентрации раствора, полученного при смешивании;


V1, V3 — объемы смешиваемых растворов.

Если раствор готовят разбавлением концентрированного раствора водой, то N3 = 0 или Т3 = 0. Например, для приготовления раствора концентрации Т2 =  50 г/л из растворов концентрации T1 =  100 г/л и T3 = 20 г/л необходимо смешать объем V1 = 50 – 20 = 30 мл раствора концентрации 100 г/л и V3 =  100 – 50 = 50 мл раствора концентрации 20 г/л:

схема

Расчеты при приготовлении растворов определенной процентной концентрации

Массу навески (г) рассчитывают по формуле:

mн=pQ/100,

где p — процентная концентрация раствора;

Q — масса раствора, г.

Если задан объем раствора V, массу раствора определяют:

Q=dV,

где d — плотность раствора, г/см3 (может быть найдена в справочных таблицах).

Массу навески при заданном объеме раствора рассчитывают:

mн=pdV/100.

Массу воды для растворения навески определяют:

mH2O=Q-m,


Так как масса воды численно приблизительно равна ее объему, то воду обычно отмеривают мерным цилиндром.

Если раствор готовят растворением кристаллогидрата вещества, а концентрация раствора выражена в процентах безводного вещества, то массу кристаллогидрата рассчитывают по формуле:

mн=pQMk/100M,

где Мk — молекулярная масса кристаллогидрата;

М — молекулярная масса безводного вещества.

Приготовление растворов разбавлением более концентрированных удобно производить путем отмеривания определенных объемов растворов и воды, при этом объем концентрированного раствора вычисляют по формуле:

Vк=pdV/pkdk,

где dk — плотность концентрированного раствора.

Растворы определенной процентной концентрации готовят как приблизительные, а поэтому навески веществ с точностью до двух-трех значащих цифр взвешивают на технических весах, а для отмеривания объемов пользуются мензурками или мерными цилиндрами.

Если раствор получают смешиванием двух других растворов, один из которых имеет большую концентрацию, а другой —меньшую, то массу исходных растворов можно определить, пользуясь правилом разбавления («правилом креста»), которое для растворов определенной процентной концентрации гласит: массы смешиваемых растворов обратно пропорциональны разностям процентных концентраций смешиваемых и получаемого растворов. Это правило выражают схемой:


схема

Например, для получения раствора в концентрации p2=10% из растворов концентрации p1=20% и р3=5% нужно смешать количество исходных растворов: m1=10-5=5г 20%-ного раствора и m3=20-10=10г 5%-ного раствора. Зная плотность растворов, можно легко определить требуемые для смешивания объемы.

Источник: www.sdelaysam.info

Растворитель и растворенное вещество

Раствор может быть образован путем растворения газа в жидкости или твердого тела в жидкости. В обоих случаях жидкость является растворителем, а другой компонент — растворенное вещество. Когда раствор образован путем смешивания двух жидкостей, растворителем считается та жидкость, которая находится в большем количестве, иначе говоря имеет бОльшую концентрацию.

Расчет концентрации раствора

Молярная концентрация

Концентрацию можно выражать по разному, но наиболее распространенный способ — указание его молярностиМолярная концентрация (молярность) — это число молей растворенного вещества в 1 литре раствора. Единица молярности обозначается символом M. Например два моля соляной кислоты на 1 литр раствора обозначается 2 М HCl. Кстати, если на 1 литр раствора приходится 1 моль растворенного вещества, тогда раствор называется одномолярным. Молярная концентрация раствора обозначается различными символами:

  • cx, Смx, [x], где x — растворенное вещество

Формула для вычисления молярной концентрации (молярности):

  • См = n/V, моль/л

где n — количество растворенного вещества в молях, V — объем раствора в литрах.

Пару слов о технике приготовления растворов нужной молярности. Очевидно, что если добавить к одному литру растворителя 1 моль вещества, общий объем раствора будет чуть больше одного литра, и потому будет ошибкой считать полученный раствор одномолярным. Чтобы этого избежать, первым делом добавляем вещество, а только потом доливаем воду, пока суммарный объем раствора не будет равным 1 л. Полезно будет запомнить приближенное правило аддитивности объемов, которое гласит, что объем раствора приближенно равен сумме объемов растворителя и растворенного вещества. Растворы многих солей приближенно подчиняются данному правилу.

Расчет разбавления растворов

Пример 1. Химичка дала задание растворить в литре воды 264 г сульфата аммония (NH4)2SO4, а затем вычислить молярность полученного раствора и его объем, основываясь на предположении об аддитивности объемов. Плотность сульфата аммония равна 1,76 г/мл.

Решение:

Определим объем (NH4)2SO4 до растворения:

  • 264 г / 1,76 г/мл = 150 мл = 0,150 л

Пользуясь правилом аддитивности объемов, найдем окончательный объем раствора:

  • 1,000 л + 0,150 л = 1,150 л

Число молей растворенного сульфата аммония равно:

  • 264 г / 132 г/моль = 2,00 моля (NH4)2SO4

Завершающий шаг! Молярность раствора равна:

  • 2,000 / 1,150 л = 1,74 моль/л, т.е 1,74 М (NH4)2SO4

Приближенным правилом аддитивности объемов можно пользоваться только для грубой предварительной оценки молярности раствора. Например, в примере 1, объем полученного раствора на самом деле имеет молярную концентрацию равную 1,8 М, т.е погрешность наших расчетов составляет 3,3%.

Моляльная концентрация

Наряду с молярностью, химики используют моляльность, или моляльную концентрацию, в основе которой учитывается количество использованного растворителя, а не количество образующегося раствора. Моляльная концентрация — это число молей растворенного вещества в 1 кг растворителя (а не раствора!). Моляльность выражается в моль/кг и обозначается маленькой буквой m. Формула для вычисления моляльной концентрации:

  • m = n/m

где n — количество растворенного вещества в молях, m — масса растворителя в кг

Для справки отметим, что 1 л воды = 1 кг воды, и еще, 1 г/мл = 1 кг/л.

Расчет разбавления растворов

Пример 2. Химичка попросила определить моляльность раствора, полученного при растворении 5 г уксусной кислоты C2H4O2 в 1 л этанола. Плотность этанола равна 0,789 г/мл.

Решение:

Число молей уксусной кислоты в 5 г равно:

  • 5,00 г / 60,05 г/моль = 0,833 моля C2H4O2

Масса 1 л этанола равна:

  • 1,000 л × 0,789 кг/л = 0,789 кг этанола

Последний этап. Найдем моляльность полученного раствора:

  • 0,833 моля / 0,789 кг растворителя = 0,106 моль/кг

Единица моляльности обозначается Мл, поэтому ответ также можно записать 0,106 Мл.

Источник: himi4ka.ru

Обычно при употреблении названия «раствор» имеются в виду истинные растворы. В истинных растворах растворенное вещество в виде отдельных молекул распределено среди молекул растворителя. Не все вещества растворяются одинаково хорошо в любой жидкости, т.е. растворимость различных веществ в тех или иных растворителях различна. Обычно растворимость твердых веществ увеличивается с повышением температуры, поэтому при приготовлении таких растворов во многих случаях необходимо их подогревать.


В определенном количестве каждого растворителя может быть растворено не более определенного количества данного вещества. Если приготовить раствор, содержащий в единице объема наибольшее количество вещества, которое может раствориться при данной температуре, и добавить к нему дополнительно хотя бы небольшое количество растворяемого вещества, то оно останется нерастворенным. Такой раствор называется насыщенным.

Если приготовить при нагревании концентрированный раствор, близкий к насыщенному, а затем быстро, но осторожно охладить полученный раствор, осадок может не выпасть. Если в такой раствор бросить кристалл соли и перемешать или потереть стеклянной палочкой о стенки сосуда, то из раствора выпадут кристаллы соли. Следовательно, в охлажденном растворе содержалось соли больше, чем это отвечало се растворимости при данной температуре. Такие растворы называются пересыщенными.

Свойства растворов всегда отличаются от свойств растворителя. Раствор закипает при более высокой температуре, чем чистый растворитель. Температура затвердевания, наоборот, у растворов ниже, чем у растворителя.

По характеру взятого растворителя растворы делятся на водные и неводные. К последним относятся растворы веществ в органических растворителях (спирт, ацетон, бензол, хлороформ и т. д.). Растворителем большинства солей, кислот и щелочей служит вода. Биохимики редко пользуются такими растворами, они чаще работают с водными растворами веществ.

В каждом растворе содержание вещества различно, поэтому важно знать количественный состав раствора. Существуют различные способы выражения концентрации растворов: в массовых долях растворенного вещества, молях на 1 л раствора, эквивалентах на 1 л раствора, граммах или миллиграммах на 1 мл раствора и др.

Массовая доля растворенного вещества определяется в процентах. Поэтому эти растворы называются процентными растворами.

Массовая доля растворенного вещества (ω) выражает отношение массы растворенного вещества (m1) к общей массе раствора (m).

ω = (m1/m) х 100%

Массовую долю растворенного вещества принято выражать на 100 г раствора. Следовательно, 10% раствор содержит 10 г вещества в 100 г раствора или 10 г вещества и 100-10 = 90 г растворителя.

Молярная концентрация определяется количеством молей вещества в 1 л раствора. Молярной концентрацией раствора (М) называют отношение количества растворенного вещества в молях (ν) к определенному объему этого раствора (V).

M = (ν/V)

Объем раствора обычно выражают в литрах. В лабораториях величину молярной концентрации принято обозначать буквой М. Так, одномолярный раствор обозначается 1 М (1 моль/л), децимолярный – 0,1 М (0,1 моль/л) и т.д. Для того чтобы установить, какое количество граммов данного вещества находится в 1 л раствора заданной концентрации, необходимо знать его молярную массу (см. таблицу Менделеева). Известно, что масса 1 моль вещества численно равна его молярной массе, например молярная масса хлорида натрия равна 58,45 г/моль, следовательно, масса 1 моль NaCl равна 58,45 г. Таким образом, 1 М раствор NaCl содержит 58,45 г хлорида натрия в 1 л раствора.

Молярная концентрация эквивалента (нормальная концентрация) определяется числом эквивалентов растворенного вещества в 1 л раствора.

Разберем понятие «эквивалент». Например, в НСl содержится 1 моль атомарного водорода и 1 моль атомарного хлора. Можно сказать, что 1 моль атомарного хлора эквивалентен (или равноценен) 1 моль атомарного водорода, или эквивалент хлора в соединении НСl равен 1 моль.

Цинк с водородом не соединяется, но вытесняет его из ряда кислот:

Zn + 2НС1 = Zn С12 + Н2

Из уравнения реакций видно, что 1 моль цинка замещает 2 моль атомарного водорода в хлороводородной кислоте. Следовательно, 0,5 моль цинка эквивалентен 1 моль атомарного водорода, или эквивалент цинка для данной реакции будет равен 0,5 моль.

Эквивалентами могут быть и сложные соединения, например в реакции:

2NaOH + H2SO4 = Na2SO4 + 2H2O

1 моль серной кислоты вступает в реакцию с 2 моль гидроксида натрия. Отсюда следует, что 1 моль гидроксида натрия эквивалентен в данной реакции 0,5 моль серной кислоты.

Необходимо помнить, что в любой реакции вещества реагируют в эквивалентных количествах. Для приготовления растворов, содержащих определенное количество эквивалентов данного вещества, необходимо уметь подсчитать молярную массу эквивалента (эквивалентную массу), т. е. массу одного эквивалента. Эквивалент (а, следовательно, и эквивалентная масса) не является постоянной величиной для данного соединения, а зависит от типа реакции, в которую вступает соединение.

Эквивалентная масса кислоты равна ее молярной массе, деленной на основность кислоты. Так, для азотной кислоты HNO3 эквивалентная масса равна ее молярной массе. Для серной кислоты эквивалентная масса равна 98:2 = 49. Для трехосновной фосфорной кислоты эквивалентная масса равна 98:3 = 32,6.

Таким способом вычисляется эквивалентная масса для реакций полного обмена или полной нейтрализации. При реакциях неполной нейтрализации и неполного обмена эквивалентная масса вещества зависит от течения реакции.

Например, в реакции:

NaOH + H2SO4 = NaHSO4 + H2O

1 моль гидроксида натрия эквивалентен 1 моль серной кислоты, поэтому в данной реакции эквивалентная масса серной кислоты равна ее молярной массе, т. е. 98 г.

Эквивалентная масса основания равна его молярной массе, деленной на степень окисления металла. Например, эквивалентная масса гидроксида натрия NaOH равна его молярной массе, а эквивалентная масса гидроксида магния Mg(OH)2 равна 58,32:2 == 29,16 г. Так вычисляется эквивалентная масса только для реакции полной нейтрализации. Для реакции неполной нейтрализации эта величина также будет зависеть от течения реакции.

Эквивалентная масса соли равна молярной массе соли, деленной на произведение степени окисления металла на число его атомов в молекуле соли. Так эквивалентная масса сульфата натрия равна 142: (1х2) = 71 г., а эквивалентная масса сульфата алюминия Аl2(SO4)3 равна 342: (3х2) = 57 г. Однако если соль участвует в реакции неполного обмена, то учитывается только число атомов металла, участвующих в реакции.

Эквивалентная масса вещества, участвующего в окислительно-восстановительной реакции, равна молярной массе вещества, деленной на число электронов, принятых или отданных данным веществом. Следовательно, прежде чем производить вычисление, необходимо написать уравнение реакции:

2CuSO4 + 4KI = 2CuI + I2 + 2K2SO4

Cu2+ + e à Cu+

I – e à Io

Эквивалентная масса CuSO4 равна молярной массе (160 г). В лабораторной практике применяют название «нормальная концентрация», которая обозначается в различных формулах буквой N, а при обозначении концентрации данного раствора буквой «н». Раствор, содержащий 1 эквивалент в 1 л раствора, называется однонормальным и обозначается 1 н., содержащий 0,1 эквивалент – децинормальным (0,1 н.), 0,01 эквивалент – сантинормальным (0,01 н.).

Титр раствора – количество граммов вещества, растворенного в 1 мл раствора. В аналитической лаборатории концентрацию рабочих растворов пересчитывают непосредственно на определяемое вещество. Тогда титр раствора показывает, какому количеству граммов определяемого вещества соответствует 1 мл рабочего раствора.

Концентрацию растворов, применяемых в фотометрии так называемых стандартных растворов, выражают обычно количеством миллиграммов в 1 мл раствора.

При приготовлении растворов кислот часто применяется концентрация 1:х, показывающая, сколько объемных частей воды (Х) приходится на одну часть концентрированной кислоты.

К приблизительным растворам относятся растворы, концентрация которых выражена в процентах, а также растворы кислот, концентрация которых обозначена выражением 1:х. Перед приготовлением растворов подготавливают посуду для приготовления и хранения их. Если готовят небольшое количество раствора, которое будет использовано в течение дня, то его не обязательно переливать в бутыль, а можно оставить в колбе.

На колбе необходимо написать специальным восковым карандашом (или маркером) формулу растворенного вещества и концентрацию раствора, например НС1 (5%). При длительном хранении на бутыль, в которой будет храниться раствор, обязательно наклеивают этикетку с указанием, какой раствор в ней находится и когда он приготовлен.

Посуда для приготовления и хранения растворов должна быть чисто вымыта и сполоснута дистиллированной водой.

Для приготовления растворов следует применять только чистые вещества и дистиллированную воду. Перед приготовлением раствора необходимо произвести расчет количества растворяемого вещества и количества растворителя. При приготовлении приблизительных растворов количество растворяемого вещества рассчитывают с точностью до десятых долей, значения молекулярных масс берут округленно до целых чисел, а при расчете количества жидкости доли миллилитра не учитывают.

Техника приготовления растворов различных веществ различна. Однако при приготовлении любого приблизительного раствора навеску берут на технохимических весах, а жидкости отмеривают мерным цилиндром.

Приготовление растворов солей. Требуется приготовить 200 г 10% раствора нитрата калия КNО3.

Расчет необходимого количества соли производят согласно пропорции:

100 г – 10 г КNО3

200 г – Х г КNО3 Х = (200 х 10) / 100 = 20 г КNО3

Количество воды: 200-20=180 г или 180 мл.

Если соль, из которой приготовлен раствор, содержит кристаллизационную воду, то расчет будет несколько иной. Например, требуется приготовить 200 г 5% раствора СаСl2, исходя из СаСl2 x 6H2O.

Вначале производят расчет для безводной соли:

100 г – 5 г СаСl2

200 г – Х г СаСl2 Х = 10 г СаСl2

Молекулярная масса СаСl2 равна 111, молекулярная масса СаСl2 x 6H2O – 219, следовательно, 219 г СаСl2 x 6H2O содержит 111 г СаСl2.

Т.е. 219 – 111

Х – 10 Х = 19,7 г. СаСl2 x 6H2O

Для получения требуемого раствора необходимо отвесить 19,7 г соли СаСl2 x 6H2O. Количество воды равно 200-19,7=180,3 г, или 180,3 мл. Воду отмеривают мерным цилиндром, поэтому десятые доли миллиметра в расчет не принимают. Следовательно, нужно взять 180 мл воды.

Раствор соли готовят следующим образом. На технохимических весах отвешивают необходимое количество соли. Аккуратно переносят навеску в колбу или стакан, где будут готовить раствор. Отмеривают нужное количество воды мерным цилиндром и выливают в колбу с навеской голи примерно половину отмеренного количества. Энергичным помешиванием добиваются полного растворения взятой навески, причем иногда для этого необходимо нагревание. После растворения навески добавляют остальное количество воды. Если раствор мутный, то его отфильтровывают через складчатый фильтр.

Приготовление растворов щелочей. Расчет количества щелочи, необходимого для приготовления раствора той или иной концентрации, производят так же, как для растворов солей. Однако твердая щелочь, особенно не очень хорошо очищенная, содержит много примесей, поэтому рекомендуется отвешивать щелочи в количестве, больше рассчитанного на2-3%. Техника приготовления растворов щелочей имеет свои особенности.

При приготовлении растворов щелочей нужно соблюдать следующие правила:

1. Кусочки щелочи следует брать щипцами, пинцетом, а если необходимо взять их руками, то обязательно в резиновых перчатках. Гранулированную щелочь в виде маленьких лепешечек насыпают фарфоровой ложкой.

2. Отвешивать щелочь на бумаге нельзя; для этого следует использовать только стеклянную или фарфоровую посуду.

3. Щелочь нельзя растворять в толстостенных бутылях, так как при растворении происходит сильное разогревание раствора; бутыль может лопнуть.

Отвешенное на технохимических весах количество щелочи помещают в большую фарфоровую чашку или стакан. В эту посуду наливают такое количество воды, чтобы раствор имел концентрацию 35-40%. Перемешивают раствор стеклянной палочкой, пока вся щелочь не растворится. Затем раствор оставляют стоять до остывания и выпадения осадка. Осадок представляет собой примеси (в основном карбонаты), которые не растворяются в концентрированных растворах щелочей. Оставшуюся щелочь осторожно сливают в другой сосуд (лучше с помощью сифона), куда доливают нужное количество воды.

Приготовление растворов кислот. Расчеты для приготовления растворов кислот иные, чем при приготовлении растворов солей и щелочей, так как концентрация растворов кислот не равна 100% из-за содержания воды; нужное количество кислоты не отвешивают, а отмеривают мерным цилиндром. При расчетах растворов кислот используют стандартные таблицы, в которых указан процент раствора кислоты, плотность данного раствора при определенной температуре и количество этой кислоты, содержащееся в 1л раствора данной концентрации.

Например, требуется приготовить 1 л 10% раствора HCl, исходя из имеющейся 38,0 % кислоты с плотностью 1,19. По таблице находим, что 10% раствор кислоты при комнатной температуре имеет плотность 1, 05, следовательно, масса 1л ее равна 1,05 x 1000== 1050 г.

Для этого количества рассчитывают содержание чистого HCl:

100 г – 10 г HCl

1050 г – Х г HCl Х = 105 г HCl

Кислота, имеющая плотность 1,19, содержит 38 г HCl, следовательно:

100 г – 38 г

Х г – 105 г

Х = 276 г или 276 : 1,19 = 232 мл.

Количество воды: 1000 мл – 232 мл = 768 мл.

Часто употребляют растворы кислот, концентрация которых выражена 1:х, где х – целое число, показывающее, сколько объемов воды надо взять на один объем концентрированной кислоты. Например, раствор кислоты 1:5 означает, что при приготовлении раствора смешали 5 объемов воды с 1 объемом концентрированной кислоты.

Например, приготовить 1 л раствора серной кислоты 1:7. Всего будет 8 частей. Каждая часть равна 1000:8 = 125 мл. Следовательно, нужно взять концентрированной кислоты 125 мл, а воды – 875 мл.

При приготовлении растворов кислот нужно соблюдать следующие правила:

1. Раствор нельзя готовить в толстостенной бутыли, так как при разбавлении кислот, особенно серной, происходит сильное разогревание. Растворы кислот готовят в колбах.

2. При разбавлении нельзя наливать воду в кислоту. В колбу наливают рассчитанное количество воды, а затем тонкой струёй, постепенно, при перемешивании добавляют нужное количество кислоты. Кислоту и воду отмеривают мерными цилиндрами.

3. После остывания раствора его переливают в бутыль и наклеивают этикетку; бумажную этикетку парафинируют; можно сделать этикетку особой краской прямо на бутылях.

4. Если концентрированная кислота, из которой будут готовить разбавленный раствор, хранится долгое время, то необходимо уточнить ее концентрацию. Для этого измеряют ее плотность и по таблице находят точное содержание кислоты в растворе.

Концентрацию точных растворов выражают в виде молярной или нормальной концентрации или титром. Эти растворы обычно употребляются при аналитических работах; в физико-химических и биохимических исследованиях их применяют нечасто.

Навески для приготовления точных растворов рассчитывают с точностью до четвертого десятичного знака, а точность молекулярных масс соответствует той точности, с которой они приведены в справочных таблицах. Навеску берут на аналитических весах; раствор готовят в мерной колбе, т. е. количество растворителя не рассчитывают. Приготовленные растворы не следует хранить в мерных колбах, их переливают в бутыль с хорошо подобранной пробкой.

Если точный раствор нужно перелить в бутыль или в другую колбу, то поступают следующим образом. Бутыль или колбу, в которую будут переливать раствор, тщательно моют, ополаскивают несколько раз дистиллированной водой и дают постоять в перевернутом виде, чтобы вода стекла, или сушат. Ополаскивают бутыль 2-3 раза небольшими порциями того раствора, который собираются переливать, а затем переливают сам раствор. Каждый точный раствор имеет свой предельный срок хранения.

Расчеты при приготовлении молярных и нормальных растворов проводят следующим образом.

Пример 1.

Требуется приготовить 2 л 0,5 М раствора Na2CO3. Молярная масса Na2CO3 равна 106. Следовательно, 1 л 0,5 М раствора содержит 53 г Na2CO3. Для приготовления 2 л необходимо взять 53 x 2 = 106 г Na2CO3. Это количество соли будет содержаться в 2 л раствора.

Иной способ визуализации расчета:

1л 1M раствора Na2CO3 содержит 106 г Na2CO3

(1л – 1M – 106 г)

2 л 1M раствора Na2CO3 содержит х г Na2CO3

(2л – 1M – х г);

при подсчете «рукой закрывается» центральная часть выражения (1M)

Находим, что 2 л 1M раствора Na2CO3 содержит 212 г Na2CO3

(2л – 1M – 212 г)

А 2 л 0,5M раствора Na2CO3 («закрывается левая часть») содержит х г Na2CO3 (2 л – 0,5 M – х г)

Т.е. 2 л 0,5M раствора Na2CO3 содержит 106 г Na2CO3

(2 л – 0,5 M – 106 г).

Источник: studopedia.ru


Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.